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Introduction

An important aspect of the structural design of a launch
vehicle is the determination of the probability that the vehicle
will survive its flight through the atmosphere, If for each
component of the structure the critical load which will cause
the component to fail has been determined, then the probability
of survlival of the vehicle 1s the probability that none of these

critical loads will be exceeded during its flight,

For final design purposes the current practice is to
determine the probabllity of fallure of & given structural
component from a "statistical load survey"El] A large number
of representative wind profiles are assembled, and for each
of them the corresponding time history of the load applied to
the given component is computed, If the critical load is
exceeded in n% of the records thus obtained, the probability
of failure of the component 1s estimated to be n/100 and the

critical load is said to be an n% load,

While this method is stralghtforward, it makes only a
very limited use of the statistical information avallable from
the locad survey, Since the probability of survival of a given
structural component has to be larger than the probability

of survival of the entire vehicle, one should expect to have

to consider in many cases loads of 1% or less, This means that,
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in order to obtain a reliable estimate of the probability of
failure of a component, one will have to determine the time
history of the loaa for several hundred representative wind

profiles,

In the first part of this paper we shall present a method
which makes a more effective use of the information contained
in the statistical load surveys. As a result, fewer records
will be required to determine the probability of failure of a
glven structural component, If certaln requirements are met,
it will even be possible to determine this probability from groups

of records in which the critical load was never exceeded,

In the second part of the paper we shall show how the use
of a statistical load survey may be avolded altogether when the
launch vehicle may be assumed to constitute a linear system,
The probability of survival of the vehicle may then be deter-
mined directly from the statistical properties of the wind

profiles,



I, Determination of the Survival Probability of the

Vehicle from Certain Statistical Parameters of
its Response,

Formulation of the Problem

Let q(z) be the load applied to a structural component
of the vehiéle as the vehicle reaches the heighé z during
a given flight. Assuming that fallure of the component will
occur if a critical value of the load 1s reached during the
flight, we note that the proﬁability of survival of the
component 1s the probabllity that the nonstationary random
function q(z) will not cross the level g = a over the interval
O<z<zm. where z. is the maximum height reached by the vehicle,
Assuming no interaction between the variocus components of the
vehicle, the probability of survival of the vehicle itself
may then be obtalned by forming the product of the survival
probablilities of its components, We should note that the above
approach to the problem may be extended to include faillure
criteria other than cri?ical "loads". These criteria could
involve structural parameters such as bending momehts, stresses,
or displacements, Therefore, in the following discussion the
function q(z) will represent the variation during the vehicle's
flight of some significant but unspecified structural parameter

and will simply be referred to as the "response" of the vehicle,

Let us denote by Pa(z)dz the probability computed over

an ensemble of records that the response q(z) will exceed the
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level q = a for the first time between the elevations z and

z + dz, The sum of these probabilitlies as z varies from 0

to Zm yields the probability of failure of the component under
consideration j the probability of survival Sa of the component

may then be expressed as
S,=1- [5"P (2) dz (1)

Thus the problem of determining the survival probability S0l
reduces to finding an expression for the probability density
Pu(z) of a first occurence of the value a of the vehicle

response at height =z,

Approximate Expression for Pqy(z)

The difficulty of obtaining a tractable expression for
Pa(z) becomes apparent if we note that for o = 0 the problem
reduces to the classical zero-crossing problem for which no
general solution is known to exist.[2] We shall therefore derive
an approximate expression for Pa(z) which should be valid for

sufficiently large values of ¢,

Following an approach similar to that used by Rice and
(3]

Beer in the case of a stationary process , We shall express

P,(z) as the product

Po(z) = £, (z| O<r<z) [1 -[7 P (r) dr] (2)



where fa(zl O<r<z)dz is the probability of a crossing of

Q@ = a in the interval z, z + dz, given no prior crossing, and
where the expression between brackets represents the probability
of no crossing for O<r<z, Assuming the initial condition q = 0
(for z = 0), and thus P (0) =0, and solving the integral

equation (2), we obtain

Z
Pa(z) = fa(zl 0 <r<z) exp [-fof (s ] O<r<s) ds] (3)

which is an exact expression for the probability density Pa(z)

of a first crossing of q = o at z,

In order to obtain a more tractable expression for P (z),
we replace the function fa(zl 0<r<z) by pa(z), where pa(z) dz
1s the expected number of upward crossings of q = a in the interval

z, z + dz, and obtain the approximation

zZ
P, (z) =p (z) exp [-f) p_(r) dr] ()

The assumptions implied by this approximation will be

indicated .n the Appendix, Let us note here, however, tnat
substituting pa(z) for fa(zl O<r<z) amounts to neglecting the
condition of no crossing of @ = a over the interval 0, z in the

first factor of the right-hand member of Eq. (2).
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It is well known [43 that the expected number of a-crossings
per unit time of a stationary random function of time may be
expressed in terms of the joint probability density of the
function and 1its derivative, 1In a similar way, we shall express

the function pa(z) as
po(z) = [ Bg (a,8; z) a8 (5)

The function g(o,B; z) is the z-dependent joint density defined

by

g(a,B; z) dodB = Probability that a<q(z)<o+de and

. (6)
B<q(z)<B+dB

where &(z) is the derivative of the response q(z) with respect

to the height =z,

Approximate Expression for the Survival Probability S,

Substituting into (1) the approximate expression (U4)

obtained for P (z), we write

= zm z
5,=1-= jo p (z) exp [-[Opa(r) dr] dz
Noting that

p,(2) éxp [-fgpa(r) dr] = = é% exp [-fgpa(r) dr]
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we obtain

Sa = exp [_]gm pa(z) dz] (7)

where the integral represents the expected total number of
crossings of q = a during the flight of the vehicle, Substi=-
tuting from (5) for pa(z), we may also write

S, = exp [-fo [o88(a,8; 2) dpdz] (8)

where g(a,B; 2z) is the z-dependent joint probability density
defined in (6),

The expressions(7) and (8) obtained for the survival
probability Sa of a gilven component of the vehicle are approx-
imate, They will be valid under the same condition as the
approximation (4), namely the condition that the value q = «
at which fallure occurs be sufficiently high, as discussed
in the Appendix. It should also be noted that the method
Just presented is applicable only if it 1s possible to
determine from the available records the Jjoint probability

density g(a,B; z) of the response q(z) and its derivative

for each height z.



Application to the Case of a Normal Distribution of the
Response and its Derivative

If q(z) and d(z) are normally distributed random variables
with means <q(z)> and <d(z)>, where < > represents an average

taken over an ensemble of flights, then

gla,B; z) = —-———7—exp [=- —— (daor2 + 2d;1,rs + dp1s2)] (9)
on|M|1/2 2 M|
where
r=oa- <(z)> , s =B - <q(z)>

and where the diJ represent the variances and covariance

di11(z) = <[a(z) - <q(z)>]1%>
di12(z) = <[q(z) = <q(z)>] [g(z) = <q(z)>1> (10)
d22(z) = <[q(z) = <q(z)>]2>

while |M| is the determinant

di1 di2

M| = (11)

diz da22

We may note the following relation between the variance

a11(z) and the covariance dj,{(z):

L
dz

diz (z) = di1(z) (12)

HO N 1o
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Introducing the covariance function

?qq(m, z2) = <[q{z1) - <«(z1)>] [a(z2) - <q(z)>]> (13)

we also note that the diJ may be expressed in terms of the

covariance function and its partial derivatives:

dii(z) = @qq(z. z)

a@q (Z]. ZZ) 3

d1,(2z) = q_ (14)
9z1 Z1 = 22 = Z
2@ (z1, z2)
daa(z) = s l

921927

|z1 Zy = Z

Substituting for g(a,B; z) from (9) into (5), we obtain

after integration

/2 —[a-<g(z)>]2
= ML (e™P+/Tp(1t+erf p)l e :

p (z) 11 (15)
L 2nd |,
where
diz . di e
P =| eemmn [a-<q(z)>} + <q(Z)> —— (16)
dii 2 |m]

We note that, if q(z) is stationary,

<q(z)> = ¢, <q(z)> =0, diz =0



" and Eq. (15) reduces to

-sm-c)2
_ 1 d22 33T,
p = o= - (17)

2w diy)

which is the expression derived by S,O0. Rice“il for the

expected number of upward a-crossings per unit height.,

Substituting now for pa(z) from (15) into (7) we obtain
the following expression for the probability of survival in

the case of a normal distribution:

1/2 -[a—<q(Z)>]2
S, = exp [-Igm LY i [e™P+ /Tp(l+erf p)] e 2411 dz
2mdy

(18)

where dj;, the determinant |[M|, and p are functions of z

defined respectively in (10), (11), and (16),
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ITI., Determination of the Survival Probability of the
Vehicle from its Dynamic Characteristics and from
the Statistical Characteristics of the Wind Field,

Statement of Assumptions and Outline of the Proposed
Methods

We shall now consider the case when the structure of
the launch vehicle may be approximated by a linear model,
and when the wind-velocity u(z) may be considered a nor-
mally distributed random variable, Since the response of
a linear system to a Gaussian input 1s itself Gaussian,
the response q(z) of the vehicle and its derivative é(z)

will be normally distributed and Eq. (18) will apply.

As seen in the preceding section, all parameters con=-
tained in Eq. (18) may be expressed in terms of the mean
value <q(z)> of the response and of the covariance functlon
@aq(z1, z,) and 1ts derivatives, Since the system is
assumed linear, the mean value <q(z)> may be obtained by
computing the response of the system to the mean value
<u(z)> of the wind velocity at each elevation, and the
covariance function @%q(zl, z,) may be expressed as the
double convolution of the covariance function @%u(zl, Z5)
of the wind-velocity fleld and of the impulse-response
function of the system, This will be described in detail

in Sections 7 and 8,
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An alternate method wlll be presented in Section 9,
It is based on the determination of the generalized power
spectrum of the wind-velocity field and on the use of a
frequency-response function which depends upon the ele-

vation of the vehicle,

It should be noted that the proposed methods elimig
nate the need for two separate analyses to predict the
effects of wind shear and of atmospheric gustiness on the
launch vehicle, If a sufficiently refined wind-velocity
measurement technique - such as the smoke-trail method -
is used in compiling the statistlcs of the wind field, the
effects of both wind shear and atmospheric gustiness will
be taken into account iIn the computation of the survival

probability of the vehicle,

Moreover, the proposed methods have the advantage of
providing for the separate determination of the statistical
characteristics of the atmosphere and of the dynamic
characteristics of the vehicle before their combined effect
on the response of the vehicle 1s estlmated. Thus wind-
velocity statistics complled at a given location may be
used to determine the survival probability of several
vehicles, while the dynamlc analysis carried on a given
vehicle will be used to predict its response under various

types of atmospheric conditions,



[

Impulse=-Response Function Method

As indicated above, we shall assume that the response
q(z) of the vehicle nay be defined as the solution of a

linear differential equation
L q(z) = u(z) (19)

where L represents a differential operator with z-dependent
coefficients and u(z) the wind velocity profile, The response

q(z) may be expressed as the convolution
Z
a(z) =‘j; h(z', z) u(z') dz' (20)

of the wind profile and of the function h(z', z) representing

the solution of the differential equation
L q(z) = §(z ~ z') | (21)

The function 6(z - z') is the Dirac delta function and
represents a unit wind impulse at height z', The corres-
ponding response h(z', z) will be referred to as the impulse-

response function of the vehilcle,

The mean value of the response of the vehicle at height
z is obtained by averaging both members of Eq. (20) over the

ensemble of flights considered, We thus have

z
<q(z)> =f h(z'. z) <ufz')> dz' (22)
0
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and note that the mean response <3j(z)>may be computed as
the response of the vehicle to the mean wind-velocity

profile <u(z)> ,

To obtain the covariance function of the response q(z)

we subtract Eq., (22) from Eq, (20), member by member,

q(z) - <q(Z)>=v[Zh(z" z) [u(z') = <u(z')>] dz' (23)

and substitute into Eq, (13)., We have

z, 2,
@gq(zl, Z3) =v/;d/; h(z{, z,) h(zé,zz)quu(zi, z} )dz}dzd

(24)
whereigzu represents the covariance function of the wind-

velocity profile:

aulZys 2,0 = <lu(z)) = <u(z)>] [u(z,) - <u(z,)>]>

(25)

<u(z1) u(zz)> - <u(z,)> <u(z,)>

The functions dij(z) used for the determination of the
survival probability Sa are obtained by substituting for ?qq
from (24) into the relations (14), We have

(2) = ( /-h(z,,z) h(z}, z) @, (21, 2z} ) dzldz} (26)

2

RED ][ h,(z}, 2) h(z}, z)@uu(z'l, z)) dzidz) (27)

d,,(z) i/[j/- h (z}, z) h (z}, z) @iu(zi, z}) dzldz} (28)
0/ 0
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where h,(z', z) denotes the derivative with respect to z
of the impulse-response function of the vehicle, Differen-

tiating both members of Eq, (20) with respect to z, we have
L4 T2
q(z) i/f h (z', z) u(z') dz’ (29)
0

and observe that hz(z', z) may also be viewed as the impulse-
response function of the system whose output is equal to

alz),

In actual computations, the integrals in Eqs. (26), (27),
and (28) will be replaced by sums, For instance, the variance
dll(z) will be expressed as

n n
d,,(z) = ] ] n(z!, 2) n(z!, z)@uu(z;, z!) (az)®  (30)
r=] s8=1
where n = z/8z, z] = (r - 1)4z, and 2z} = (s - 1)az, To
evaluate the right-hand member of Eq., (30), it will be neces-
sary to determine h(z}, z) for r = 1, 2, ..., n, and thus to
solve Eq, (21) for n different values of z', The number n
of responses to be calculated may be estimated by noting that
the interval Az should be appreciably smaller than the
smallest wave=length to which the vehicle is expected to

respond,

Use of the Adjoint System

The ntwiter of responses to be computed may be conside-
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rably reduced through the use of the adjoint system, This
alternate approach takes advantagé of the fact that the
number of values of z for which the funct{pns dij(z) must
be determined to obtain a good estimate of the survival
probability Sa is considerably smaller than the average
number n of intervals Az which must be used 1n the approx-

imation shown in Eq., (30),

Introducing the variable ¢ = z - z' and defining the new

function
h(zy ¢) = h(z =g,z ) (31)

we write the variance in the form

Z
dll(z) i/;u/:h(z;cl) h(z;cz)ﬁ?hu(z - T, 2 = 5,)d5,6%, (32)

which may be approximated by

n

n
zl zl h(z; &) h(z; 1) @, (2-%y, 2z-8g) (8%)%(33)
r= 5=

da (z) =
11

where n = z/8¢, ¢ = rAgz , and ¢ = sAz , Now, for any given
value of z the function h(z; t) depends only upon % and may

be viewed as the solution of the differential equation
L, a(g) = 6(3) (34)

which defines the response of a certain system to a unit

impulse applied at ¢ = 0, This system 1s the adjolnt of the

- 16 -



vehicle system for the glven height z and its differential
operator Lz may be obtained from the operator L of the véhicle

5]

system Solving Eq, (34) for a particular value of the

parameter z will yleld the response h(z; ¢ ) for all values ¢ = z..
and ¢ "= ¢, required in the computation of d,;(z) for the height

z, Thus the number of differential equations to be solved 1is
equal to the number of values of z for which the functions

dij(z) should be determined and, as stated earlier, this number

is considerably smaller than the number of values of z' for

which the original differential equation (21) should be solved,

It should be noted that the determination of the response

h(z; %) is particularly simple when an analog simulation of

the vehicle system has been obtained.

The computation of the functions d,,(z) and d,,(z) may
be similarly simplified through the use of
the adjoint of the system characterized by the impulse-response
function h, (z', 2z),i.,e., the system whose output is equal to

the derivative q(z) of the response of interest,

Frequency-Response Function Method

We shall now consider an alternate method for the com-
putation of the functions diJ(Z) which involves the determi-
nation of a z-dependent frequency-response function, One of
the advantages of the method is that the concept of frequehcy-

response function is more familiar to structural engineers than
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the concept of impulse-response function., Another 1s that, in
general, a smaller number of characteristié responses need to
be computed to determine the survival probability of the
vehicle (unless the adjoint system is used), A possible
drawback of the method 1s that the computation of the functions
dij(z) is based on the knowledge of the generalized power
spectrum of the wind-velocity field, a function which must be
obtalined through a double Fourier transformation of the cova-

~riance function,

The method is based on the computation of the response
of the vehicle to sinusoidal wind profiles of various wave-
numbers k, Setting

ikz

u(z) = e (35)
in Eq, (19), we obtaln the set of differential equatlons
L q(z) = e**? (36)

which define the desired responses, Denoting by q(z; k) the
solutions of Eq. (36), we define the frequency-response function
H(z; k) of the vehicle by setting
, YN = Uloe 1) oikZ
a(z; k) = H(z; k) e (37)
We note that, contrary to the case of a system characterized by
a differential operator with constant coefficients, the frequency-

response function of the vehicle depends upon the variable z.
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Substituting for q(z) and u(z), respectively, from (37) and
(35) into (20), and dividing both members by e'®?, we obtain the
following relation between the frequency-response function and

the impulse-response function

H(z; k) f};zh(z'. z) e'ik(z'z')dz' (38)

or, setting z - z' = ¢ and writing the impulse-response function

in the form introduced in (31),

VA
H(z; k) =f h(z; ¢) e"*KEqg (39)
0 .

The last relation shows that the frequency-response function of
the vehicle may be defined at each height z as the Fourier

transform in ¢ of the impulse-response function h(z; ),

We shall naw define the generalized power spectrum of the
wind-velocity field as the double Fourier transform of the

covariance function of the field.[G] We write

i(k -k
(ks k) i/i//??hu(zl, Z,) el(k12) 222)dzldzz (40)
0J0

The inverse transformation yields

/m/-(”

- . L(k- Z.=K.Z, 1t -

%u(zl, z,)* (2*)%/9/ *aulkis k2) e 2% ‘z‘)ﬂ‘ﬂmz (41)
s " -®

Substituting for © (z], z}) from (41) into (24), and using

(38), we express the covariance function of the response as a
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double convolution of the frequency-response function of the

vehicle and the generalized power spectrum of the wind field

Qq(zl’ ZZ) = (2'")2[] H*(Zl; k ) H(ZZ! 2)

walk s k) et Fem M m g, (a2)

where H¥(z; k) denotes the conjugate of H(z; k).

Substituting for @%q(zl, z,) from (42) into the relations

(14), we obtain the following expressions for the functions

d J(Z):

dy,(z) = -L-ZZ/J[’ H¥(z; ky) Hiz; kyp)
(2“) w0 jmoo

0 eny kp) etz 1) 2ai qi, (43)
d,,(2) = —t— [H%(z; k,) - 1k H(z; k)] H(z; k,)
(271)2 ) cef =oo
o (ky, kp) el (K2=k1)zgq gy, (44)
= l * . - . 2
d,,(2) ?;:;%}f;[: [H¥(z; k,) - 1k H(z; k)]
| - 1(k -k
[H, (2 k,) + 1kH(z; k)1 o (k,, k) et (F2¥1)%ak ax,

(45)

where Hz(z; k) denotes the derivative of the frequency-response
function with respect to z,
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An alternate expression for the functions dij(Z)’ involving
a simple convolution followed by a single Fourier transformation,

may be obtained by introducing the new coordinates

2y + 2z,
Z-‘-’m. Y]=ZZ-Z1 ()"6)
2

Noting that, after thils change of varlables, the exponent in

Eq. (43) takes the form

Ky + k,
i(k1zl - k222)= —1[(]&2 - KI)Z + -—2——— n]

we introduce the new wave-numbers

k=m. K=k -k (u7)

Solving Eqs. (46) and (47) for the old variables, substituting

into Eq. (UO), and introducing the new functions

© (z;n) = Qz=-23,z+3)

2
(48)
- K K
o LK3 k) = aulk - ;, k + -2-)

we obtaln the relation

.I, n
s 0 = [ [ e mer e

which provides an alternate way for computing the generalized

P
g

\O

S

power spectrum, We note the following property of symmetry:
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o (k3 =x) = o%¥ k; «) (50)

Carrying the new variables (46) and (47) into Egs. (43),
(4h), and (45), we obtain the following expressions for the

functions diJ(z):

! . iz
dij(z) = E;Jiw Dij(z’ k) e dk (51)
where
1 ) - Ky K -
D;1(Z} k)= == | H¥(zj; K= =) H(z; k + =) o (k; x)dk (52)
o J_o 2 2 W
Dy, (z;5 x) =-1—/ [H*(z;k-f-) - 1(k - £) H*¥(z; k-f-)]
| 271 few 2 2 2 | 2
H(z; k + =) o (kjx )dk (53)
2
D,,(z; k) = L [H¥(z; k - =) = i(k - =) H¥(z; k = =)]
27 2 2 2
[H (z; k + =) + 1(k + =) H(z; k + =)] ¢ (k; x)dk (54)
Z 2 2 ) uu

The functions d,,(z) may thus be obtained by a single Fourier

iJ

transformation from the functions D,,.(z; k), which are

J
themselves obtained by forming simple convolutions of the
generalized power spectrum and of the frequency-response function
and its derivative, We note that, while the functions

DiJ(Z; k) are not the Fourier transforms of the functions
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diJ(Z) - since they are themselves dependent upon z - they

satisfy the symmetry relation
Dij(z; - k) = Dij(z; K) (55)

which will help in reducing the length of the numerical

computations,
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APPENDIX

T¢ obtain a better understanding of the error involved in

the use of the approximation (U4)
P (z) = p (2) [-f p_(r) dr] (A-1)

for the probability density of a first occurence of the value

q = a, We shall compare this approximation with the exact value
of Pa(z). Thls value may be expressed as a series of integrals
through a straightforward annlieation of the inclusion and

exclusion method as indicated in [4]:
P (z) =p (z2) - X jz p (ry, z) dr
o o 11 0 Ya''le 1
S [212 p (ry, ry, z)dr;dr, + (A=2)
51 00 “a s “2» 2 e

where p(ry, rs, rsyeee, r,, z) dridry.., dr dz is the probability
of crossings of q = a with a positive slope in intervals

ryy, ry +dry; ro, rp +dry; seey rp, ry + dry, and z, z + dz,

n

Expanding the exponential in (4) in a series, we obtain
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p (z) exp [-ffp (r)dr] =p (z) - j% [P (z)p (r)dr,

+ ;% jgj;pa(z) p (r1) p (r2)driéry= ou0  (A=3)

Subtracting (A-3) from (A-2) term by term yields the difference

between the exact and approximate expressions for Pa(z)

Pa(z) - pa(z) exp [-{g p, (r)dr] =

- i% jg [pa(rl,z) - pa(z) pa(rl)] dr;

1 Z 12 ,
+ = [ofop (ri, r2,.2) = p (2)p (ri)p (rz)ldridro- ...

(A=-4)

We thus check that the error in the approximation (4) is
due to neglecting the dependence of an a-crossing at a particular
height on previous a-crossings since, if the crossings are

independent,
pa(rI’ er ccey rn’Z) = pa(rl) pa(rz) R pa(rn) pa(z)o

This appears to be a reasonable assumption for our
particular application since one would expect, for large values

of «, that the a=-crossings would 1lndeed be rare events and as

such could be treated as independent events,
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